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Introduction

Motivation

Computation of volatility/covariance of financial asset returns plays a central role
for many issues in finance: risk management, hedging strategies, forecasting...

Black&Scholes model - constant volatility - does not account for:
heteroschedasticity, predictability, volatility smile, covariance between asset returns
and volatility (leverage effect) V
stochastic volatility models proposed to model asset price evolution and to price
options (adding risk factors represented by Brownian motions
[Heston, 1993, Hull and White, 1987, Stein and Stein, 1991], jumps [Bates, 1996],
or introducing memory [Hobson and Rogers, 1998])

Availability of high frequency data have the potential to improve the capability of

computing volatility/covariances in an efficient way to many extend

[Andersen et al., 2006] (forecasting), [Bollerslev and Zhang, 2003] (risk factor

models), [Fleming et al., 2003] (asset allocation)....
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Introduction Outline

Outline

Definition of Fourier estimator of spot and integrated volatility/covariance

Properties of Fourier estimator with high frequency data

Potentiality of Fourier estimator for some applications:

Volatility of Volatility and Leverage estimation
Forecasting Volatility
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Continuous time model

Non-parametric and model free context

Model: continuous Brownian semimartingale

(B) dpj(t) =
d∑

i=1

σj
i (t) dW i + bj(t) dt, j = 1, . . . , n,

W = (W 1, . . . ,W d) are independent Brownian motions and σ∗∗ and b∗ are adapted
random processes satisfying

E [

∫ 2π

0

(bj(t))2dt] <∞, E [

∫ 2π

0

(σj
i (t))4dt] <∞ i = 1, . . . , d , j = 1, . . . ,m

Objective: estimation of the time dependent volatility matrix:

Σjk(t) =
d∑

i=1

σj
i (t)σk

i (t) j , k = 1, . . . , n
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Continuous time model

Main Issues

p∗(t) asset log-price Brownian semimartingale ⇒ integrated volatility/covariance∫ t

0

Σik(s)ds = P− lim
n→∞

∑
0≤j<t2n

(
pi ((j + 1)2−n)− pi (j2−n)

)(
pk((j + 1)2−n)− pk(j2−n)

)
.

Nevertheless, when sampling high frequency returns, three difficulties arise:

1) the distortion from efficient prices due to the market microstructure noise such as
price discreteness, infrequent trading,...[Roll, 1984].
2) instantaneous volatility computation involves a sort of numerical derivative, which
gives rise to numerical instabilities [Foster and Nelson, 1996, Comte and Renault, 1998]

In the multivariate case also:

3) the non-synchronicity of the arrival times of trades across markets leads to a bias
towards zero in correlations among stocks as the sampling frequency increases
[Epps, 1979]
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Fourier method

Mean covariance [Malliavin and M. 2002, 2009]

Theorem

Consider a process p satisfying the assumption (B). Then we have:

1

2π
F(Σij) = F(dpi ) ∗B F(dpj). (1)

The convergence of the convolution product (1) is attained in probability

where, for k ∈ Z

F(dpi )(k) :=
1

2π

∫ 2π

0

e−ikt dpi (t)

(Φ ∗B Ψ)(k) := lim
N→∞

1

2N + 1

N∑
s=−N

Φ(s)Ψ(k − s)

F(Σij)(k) :=
1

2π

∫ 2π

0

e−ikt Σij(t) dt
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Fourier method

Fourier instantaneous covariance computation

By the theorem we gather all the Fourier coefficients of the volatility matrix by
means of the Fourier transform of the log-returns. Then reconstruct the
co-volatility functions Σij(t) from its Fourier coefficients by the Fourier-Fejer
summation:
let for i , j = 1, 2 and for any |k | ≤ N,

c ij
N(k) :=

1

2N + 1

∑
|s|≤N

F(dpi )(s)F(dpi )(k − s),

then

Σij(t) = lim
N→∞

∑
|k|<N

(1− |k |
N

)c ij
N(k)eikt
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Fourier estimator Consistency under asynchronous observations

Consistency

Given observation times (t1
i )0≤i≤n1 and (t2

j )0≤j≤n2 , ρ(n) := ρ1(n1) ∨ ρ2(n2) and
ρ∗(n∗) = maxt∗l

|t∗l+1 − t∗l |, define:

ck(dp1
n1

) :=
1

2π

n1−1∑
i=0

e−ikt1
i (p1(t1

i+1)− p1(t1
i ))

ck(dp2
n2

) :=
1

2π

n2−1∑
j=0

e−ikt2
j (p2(t2

j+1)− p2(t2
j ))

ck(Σ12) :=
1

2π

∫ 2π

0

e−iktΣ12(t)dt
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Fourier estimator Consistency under asynchronous observations

Consistency

Define for any |k| ≤ N

αk(N, p1
n1
, p2

n2
) =

2π

2N + 1

∑
|s|≤N

cs(dp1
n1

)ck−s(dp2
n2

). (2)

Suppose that Nρ(n)→ 0 as N, n→∞. Then, for any k , in probability

αk(N, p1
n1
, p2

n2
)→ ck(Σ12)

In probability, uniformly in t,

Σ̂12
n1,n2,N(t) :=

∑
|k|≤N

(1− |k |
N

)αk(N, p1
n1
, p2

n2
)eikt → Σ12(t) (3)
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Fourier estimator Asymptotic Normality

Asymptotic Normality

Suppose and ρ(n)N4/3 → 0, ρ(n)N2α →∞, if α > 2
3 and assumption (A) holds.

Then for any function g ∈ Lip(α), with compact support in (0, 2π),

(ρ(n))−
1
2

∫ 2π

0

g(t)(Σ̂12
n,N(t)− Σ12(t))dt

converges in law to a mixture of Gaussian distribution with variance∫ 2π

0

H ′(t)g2(t)(Σ11(t)Σ22(t) + (Σ12(t))2)dt.

(A) H(t) quadratic variation of time
(i) ρ(n)→ 0 and niρ(n) = 0(1) for i = 1, 2
(ii) Hn(t) := n

2π

∑
t1
i+1
∧t2

j+1
≤t

(t1
i+1 ∧ t2

j+1 − t1
i ∨ t2

j )2I{t1
i ∨t2

j <t1
i+1∧t2

j+1}
→ H(t) as n→∞

(iii) H(t) is continuously differentiable
If data are synchronous and equally spaced then H ′(t) = 1, [Mykland and Zhang, 2006]
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Fourier estimator Asymptotic Normality

Spot volatility estimators

Alternative estimators of spot volatility, NOT involving numerical derivative:

[Genon-Catalot, Laredo and Picard, 1992],
[Hoffman, Munk and Schmidt-Hieber, 2010]
[Ogawa and Sanfelici, 2011], [Ogawa and Ngo, 2010]
[Mancini, Mattiussi and Reno, 2012]
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Model with microstructure noise

Model with microstructure

Consider the following model for the observed log-returns

p̃i (t) := pi (t) + ηi (t) for i = 1, 2,

Moreover the following assumptions hold:

(M)

M1. p := (p1, p2) and η := (η1, η2) are independent processes, moreover η(t) and
η(s) are independent for s 6= t and E [η(t)] = 0 for any t.
M2. E [ηi (t)ηj(t)] = ωij <∞ for any t, i , j = 1, 2.

or (MD)

the microstructure noise is correlated with the price process and there is also a
temporal dependence in the noise components
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Model with microstructure noise

Fourier estimator of integrated covariance

Σ̂12
N,n1,n2

:=
(2π)2

2N + 1

∑
|s|≤N

cs(dp1
n1

)c−s(dp2
n2

)

If ρ(n)N → 0, the following convergence in probability holds:

lim
n1,n2,N→∞

Σ̂12
N,n1,n2

=

∫ 2π

0

Σ12(t)dt.

In the application we consider also the following version which preserves definite
positiveness of the covariance matrix

Σ̂12
N,n1,n2

:=
(2π)2

N + 1

∑
|s|≤N

(1− |s|
N

)cs(dp1
n1

)c−s(dp2
n2

).
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Model with microstructure noise

Quadratic covariation type estimators

Estimators based on the choice of a synchronization procedure, which gives the
observations times {0 = τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 2π} for both assets

Realized covariation RC 12 :=
n−1∑
i=1

δi (p
1)δi (p

2),

Realized covariation with leads and lags RCLL12 :=
∑

i

L∑
h=−l

δi+h(p1)δi (p
2),

Realized covariance kernels estimator RCLLW 12 :=
∑

i

L∑
h=−l

w(h)δi+h(p1)δi (p
2),

where δi (p
∗) = p∗(τi+1)− p∗(τi ), and w(h) is a kernel.

inconsistent for asynchronous observations and inconsistent under (i.i.d) noise, the
MSE diverges as the number of observations increases; RCLL1,2, RCLLW 1,2 more robust
to microstructure noise, but they are much biased by dependent noise contaminations
[Griffin and Oomen, 2010]
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Model with microstructure noise

Refresh times consistent estimators

• [Barndorff-Nielsen and al., 2008a] Realized covariance kernels with refresh times
consistent for asynchronous observations/robust to some kind of noise

K 12 :=
n∑

h=−n

k

(
h

H + 1

)
Γ12

h ,

Γ12
h is h-th realised autocovariance of the two assets, k(·) belongs to a suitable

class of kernel functions (Parzen).

• [Kinnebrock and Podolskij, 2008] Modulated Realised Covariation
pre-averaging technique to reduce the microstructure effects (if one averages a
number of observed log-prices, one is closer to the latent process p(t))
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Model with microstructure noise

Consistent estimators

• [Hayashi and Yoshida, 2005] All-overlapping estimator

AO12 :=
∑
i,j

δI 1
i
(p1)δI 2

j
(p2)I(I 1

i ∩I 2
j 6=∅),

where δI∗i (p∗) := p∗(t∗i+1)− p∗(t∗i ). Consistent for asynchronous observations,
but NOT robust to noise: V

• [Voev et Lunde, 2007] Sub-sampled All-overlapping estimator
• [Christensen, Podolskij and Vetter, 2012] Pre-averaged All-overlapping estimator
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Model with microstructure noise MSE under noise and asynchronicity

MSE

regular asynchronous trading: the asset 1 trades at regular points: Π1 = {t1
i : i = 1, . . . , n1 and t1

i+1 − t1
i = 2π

n1
}; also asset 2 trades at regular

points: Π2 = {t2
j : j = 1, . . . , n2 and t2

j+1 − t2
j = 4π

n1
}, but no trade of asset 1 occurs at the same time of a trade of asset 2

MSEAOm = o(1) + 2ω11

n
2
−1∑

j=1

E [

∫ t2
j+1

t2
j

Σ22(t)dt] + 2ω22

n−1∑
i=1

E [

∫ t1
i+1

t1
i

Σ11(t)dt]+

+2(n − 1)ω11ω22

MSEFm = o(1) + 2ω11

n
2
−1∑

j=1

D2
N(t1

n−1 − t2
j )E [

∫ t2
j+1

t2
j

Σ22(t)dt]+

+2ω22

n−1∑
i=1

D2
N(t1

i − t2
n
2
−1)E [

∫ t1
i+1

t1
i

Σ11(t)dt] + 4ω11ω22D
2
N(t1

n−1 − t2
n
2
−1)

where DN (t) := 1
2N+1

sin[(N+ 1
2

)t]

sin t
2
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Model with microstructure noise Montecarlo Analysis

Montecarlo Analysis

We simulate discrete data from the continuous time bivariate GARCH model[
dp1(t)
dp2(t)

]
=

[
β1σ

2
1(t)

β2σ
2
4(t)

]
dt +

[
σ1(t) σ2(t)
σ3(t) σ4(t)

] [
dW5(t)
dW6(t)

]
dσ2

i (t) = (ωi − θiσ2
i (t))dt + αiσ

2
i (t)dWi (t), i = 1, . . . , 4,

The logarithmic noises η1(t), η2(t) are i.i.d. Gaussian, possibly contemporaneously
correlated.

We generate second-by-second return and variance paths over a daily trading period of h = 6 hours. Then we sample the observations according to

different scenarios: regular synchronous trading with durations ρ1 = ρ(n1) and ρ2 = 2ρ1; regular non-synchronous trading with durations ρ1 and

ρ2 = 2ρ1 and displacement δ · ρ1; Poisson trading with durations between trades drawn from an exponential distribution with means λ1, λ2.
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Model with microstructure noise Montecarlo Analysis

Reg-NS Reg-S + Unc Reg-NS + Unc Reg-NS + Cor

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

5.72e-4 -9.88e-3 3.35e-4 -6.09e-3 7.29e-4 -1.12e-2 4.73e-4 -8.82e-3

RC12
0.5min 2.96e-2 -1.68e-1 1.06e-3 8.80e-4 3.45e-2 -1.80e-1 3.20e-2 -1.74e-1

RC12
1min 9.14e-3 -8.44e-2 2.08e-3 2.70e-3 1.12e-2 -9.16e-2 9.74e-3 -8.65e-2

RC12
5min 1.16e-2 -1.80e-2 1.14e-2 5.00e-3 1.44e-2 -2.33e-2 1.13e-2 -1.68e-2

RCLL12
0.5min 2.88e-3 -1.68e-3 3.34e-3 2.94e-3 3.71e-3 -2.43e-3 3.15e-3 -1.55e-3

RCLL12
1min 6.40e-3 -3.13e-3 6.42e-3 5.04e-3 8.00e-3 -3.37e-4 6.13e-3 3.09e-3

RCLL12
5min 3.35e-2 1.11e-2 3.12e-2 3.15e-4 4.23e-2 -7.22e-3 3.61e-2 6.79e-3

AO12 4.72e-4 -1.20e-3 4.47e-4 -1.08e-3 6.88e-4 9.45e-4 5.98e-4 -5.91e-4

K12 9.33e-4 -8.13e-3 9.13e-4 -5.22e-4 1.28e-3 -6.32e-3 1.09e-3 -7.18e-3

MRC12 2.80e-3 -3.27e-2 2.57e-3 -2.55e-2 3.38e-3 -3.01e-2 2.91e-3 -2.87e-2

Reg-NS + Dep Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.96e-4 -6.32e-3 1.07e-3 -1.38e-2 1.18e-3 -1.53e-2 1.00e-3 -1.43e-2

RC12
0.5min 3.02e-2 -1.66e-1 3.33e-2 -1.76e-1 3.11e-2 -1.70e-1 2.91e-2 -1.64e-1

RC12
1min 9.97e-3 -8.17e-2 1.08e-2 -8.95e-2 1.05e-2 -8.85e-2 1.03e-2 -8.62e-2

RC12
5min 1.47e-2 -1.70e-2 1.28e-2 -2.50e-2 1.36e-2 -2.06e-2 1.23e-2 -2.64e-2

RCLL12
0.5min 4.42e-3 3.20e-3 3.81e-3 -7.98e-3 3.40e-3 -6.84e-3 3.73e-3 -9.08e-3

RCLL12
1min 8.06e-3 -9.21e-4 6.81e-3 -3.41e-3 7.23e-3 1.26e-3 7.80e-3 3.78e-3

RCLL12
5min 3.59e-2 -1.60e-2 3.31e-2 -3.59e-3 3.74e-2 6.35e-3 3.67e-2 -1.47e-2

AO12 7.42e-3 7.46e-2 1.29e-3 -8.75e-4 1.24e-3 9.32e-3 8.10e-3 7.49e-2

K12 5.25e-3 5.43e-2 5.88e-3 -6.35e-2 4.57e-3 -5.46e-2 2.85e-3 -1.95e-2

MRC12 3.93e-3 -1.59e-2 4.19e-3 -3.00e-2 3.71e-3 -2.71e-2 4.72e-3 -2.24e-2

Tabella: Comparison of integrated volatility estimators. The noise variance is 90% of the
total variance for 1 second returns. ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0
seconds for Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for
Poisson trading.
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Model with microstructure noise Montecarlo Analysis

Reg-S + Unc Reg-NS + Unc Reg-NS + Cor Reg-NS + Dep

MSE bias MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

3.42e-4 -3.28e-3 3.93e-4 -4.93e-3 4.37e-4 -3.86e-3 8.67e-4 -4.90e-3

RC12
0.5min 3.81e-2 4.01e-3 6.92e-2 -1.66e-1 8.73e-2 -1.81e-1 2.00e+0 -1.47e-1

RC12
1min 2.26e-2 -4.08e-3 3.35e-2 -8.09e-2 4.31e-2 -8.67e-2 1.14e+0 -1.19e-1

RC12
5min 1.93e-2 -4.05e-3 2.21e-2 -1.48e-2 2.67e-2 -8.87e-3 2.84e-1 -5.89e-2

RCLL12
0.5min 2.77e-2 5.92e-3 3.46e-2 -1.57e-3 4.28e-2 2.48e-3 1.37e+0 -3.36e-2

RCLL12
1min 2.29e-2 -1.27e-3 2.59e-2 -9.86e-4 3.45e-2 -8.57e-3 6.82e-1 1.37e-2

RCLL12
5min 4.47e-2 1.02e-3 4.46e-2 1.02e-3 4.91e-2 1.48e-2 2.22e-1 -6.84e-4

AO12 9.76e-2 5.38e-3 7.71e-2 2.49e-2 9.23e-2 -7.94e-3 4.40e+0 -8.95e-3

K12 3.69e-2 -2.57e-3 3.80e-2 1.67e-2 4.94e-2 -7.48e-3 2.14e+0 2.44e-2

MRC12 6.42e-3 -1.66e-2 7.74e-3 -1.40e-2 8.04e-3 -9.84e-3 1.25e-2 -2.21e-2

Poisson + Unc Poisson + Cor Poisson + Dep

MSE bias MSE bias MSE bias

Σ̂12
N,n1,n2

1.14e-3 -1.26e-2 5.35e-4 -5.62e-3 5.24e-4 -3.54e-3

RC12
0.5min 9.50e-2 -2.10e-1 5.11e-2 -4.78e-2 1.82e+0 -1.44e-1

RC12
1min 4.71e-2 -1.04e-1 3.00e-2 -1.54e-2 1.03e+0 -6.62e-2

RC12
5min 2.79e-2 -3.07e-2 2.39e-2 -1.75e-2 3.01e-1 -3.93e-2

RCLL12
0.5min 4.13e-2 -1.00e-2 3.70e-2 3.25e-4 1.43e+0 6.61e-2

RCLL12
1min 3.18e-2 1.08e-2 2.87e-2 -8.09e-3 6.96e-1 -3.81e-2

RCLL12
5min 5.88e-2 1.61e-2 4.39e-2 -2.27.e-3 2.40e-1 -3.03e-2

AO12 8.83e-2 5.85e-3 1.27e+0 1.07e+0 2.91e+0 1.12e-1

K12 4.87e-2 -5.59e-2 2.63e-1 4.70e-1 1.61e+0 1.83e-3

MRC12 1.23e-2 -2.12e-2 9.94e-3 -2.22e-2 1.58e-2 -2.66e-2

Tabella: Comparison of integrated volatility estimators. Increased Noise (as in
[Griffin and Oomen, 2010]). ρ1 = 5 sec, ρ2 = 10 sec with a displacement of 0 seconds for
Reg-S and 2 seconds for Reg-NS trading; λ1 = 5 sec and λ2 = 10 sec for Poisson trading.
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Model with microstructure noise Montecarlo Analysis

Feasible estimators

In order to produce feasible central limit theorems for all the estimators, and as
a consequence feasible confidence intervals, it is necessary to obtain efficient
estimators of the so called quarticity, which appears as conditional variance in
the central limit theorems.

Nevertheless, the studies about estimation of quarticity are still few:

estimating integrated quarticity reasonably efficiently is a tougher problem than
estimating the integrated volatility, as the effect of noise is magnified up

[Barndorff-Nielsen and al., 2008a]
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Model with microstructure noise Montecarlo Analysis

Fourier Quarticity estimator

σ4
n,N,M := 2π

∑
|s|<M

cs(σ2
n,N)c−s(σ2

n,N)

[M. and Sanfelici, 2012]: effectiveness of Fourier estimation method when applied
to compute the quarticity in the presence of microstructure noise, due to the
intrinsic robustness of the Fourier estimator of volatility
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Volatility of Volatility and Leverage

Fourier estimator properties

1) uses all the available observations, no synchronization of the original data: it is
based on the integration of the time series of returns rather than on its
differentiation
2) it is designed specifically for high frequency data: by cutting the highest
frequencies, it uses as much as possible of the sample path without being more
sensitive to market frictions

Focus

3) it allows to reconstruct the volatility/covariance as a stochastic function of
time: we can handle the volatility function as an observable variable
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Volatility of Volatility and Leverage

Stochastic Volatility Model

{
dp(t) = σ(t)dW0(t) + a(t)dt
dv(t) = γ(t)dZ (t) + b(t)dt

v(t) := σ2(t) is the variance process,
W0 and Z correlated Brownian motions: η(t)dt = dW0(t) ∗ dZ (t)

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]
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Volatility of Volatility and Leverage

Method

Compute pathwise the diffusion coefficients σ(t), γ(t) and the covariance
between the price and the instantaneous variance, %(t), given the observation of
the asset price trajectory p(t), t ∈ [0,T ]

1. compute the Fourier coefficients of the unobservable instantaneous variance process
v(t), t ∈ [0,T ] in terms of the Fourier coefficients of p(t) V v(t) is reconstructed from
its Fourier coefficients by the Fourier-Fejer summation method

2. the instantaneous variance v(t) is handled as an observable variable V we iterate the
procedure to compute the volatility of the variance process identifying the two
components: volatility of variance (γ(t)) and asset price-variance covariance (%(t))

3. finally compute η(t) by to the identity %(t) = η(t)σ(t)γ(t) with σ(t) and γ(t) a.s.
positive
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Volatility of Volatility and Leverage

Volatility of Volatility

Derive an estimator for Fourier coefficients (ck(γ2)) of γ2(t) given the
observations of the variance process:
By parts

ck(dvn,M) = ikck(vn,M) +
1

2π
(vn,M(2π)− vn,M(0)),

where ck(vn,M) were computed from dp

Let

ck(γ2
n,N,M) :=

2π

2N + 1

∑
|j|≤N

cj(dvn,M)ck−j(dvn,M)

If N4

M → 0 and M
5
4 ρ(n)→ 0 for n,N,M →∞

P − lim
n,N,M→∞

ck(γ2
n,N,M) = ck(γ2)
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Volatility of Volatility and Leverage

Leverage

To compute the instantaneous covariance %(t) we exploit the multivariate
version of Fourier estimator

obtain a consistent estimator of the k-th Fourier coefficient of %(t) starting
from the Fourier coefficients of the observed asset returns

ck(%n,N,M) =
2π

2N + 1

∑
|j|≤N

cj(dpn)ck−j(dvn,M)

If N2

M → 0 and Mρ(n)→ 0 for n,N,M →∞, then

P − lim
n,N,M→∞

ck(%n,N,M) = ck(%)
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Volatility of Volatility and Leverage

(Preliminary) Montecarlo Analysis

Replicate numerical experiment by [Bollerslev and Zhou, 2002] who apply a
generalized moment method (GMM) exploiting high frequency data, to
estimate ξ, ξη(= %) and square root process:

dp(t) =
√

v(t)dW0(t)

dv(t) = k(θ − v(t))dt + ξ
√

v(t)dZ (t)

k=mean reversion
θ=long run
ξ= volatility of variance

W0,Z are standard Brownian motions dW0(t) ∗ dZ (t) = ηdt
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Volatility of Volatility and Leverage Montecarlo Analysis

Montecarlo Analysis

We consider three parameter scenarios suggested in [Bollerslev and Zhou, 2002]:

Scenario A : k = 0.03, θ = 0.25, ξ = 0.1,

Scenario B : k = 0.1, θ = 0.25, ξ = 0.1,

Scenario C : k = 0.1, θ = 0.25, ξ = 0.2,

Two values of η: η = −0.2 and η = −0.7
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Volatility of Volatility and Leverage Montecarlo Analysis

True values Mean Median Standard Deviation
T=1000 T=4000 T=1000 T=4000 T=1000 T=4000

Panel A
ξη = −0.02 -0.0220 -0.0221 -0.0125 -0.0262 0.2157 0.1474
ξ = 0.1 0.1040 0.1014 0.1040 0.1014 0.0890 0.0768

Panel A
ξη = −0.07 -0.0706 -0.0729 -0.0622 -0.0730 0.2201 0.2106
ξ = 0.1 0.1075 0.1048 0.1075 0.1048 0.0856 0.0138

Panel B
ξη = −0.02 -0.0181 -0.0282 -0.0177 -0.0201 0.2865 0.2488
ξ = 0.1 0.1012 0.1069 0.1012 0.1069 0.0699 0.0695

Panel B
ξη = −0.07 -0.0717 -0.0737 -0.1314 -0.0711 0.2828 0.2560
ξ = 0.1 0.1330 0.1075 0.1331 0.1075 0.1188 0.0753

Panel C
ξη = −0.04 -0.0469 -0.0409 -0.1394 -0.0373 0.2707 0.1987
ξ = 0.2 0.2023 0.2066 0.2341 0.2165 0.1474 0.0892

Panel C
ξη = −0.14 -0.1263 -0.1569 -0.1442 -0.1561 0.3380 0.0616
ξ = 0.2 0.1994 0.2006 0.1984 0.2130 0.1571 0.0926

Tabella: Average value, median value and standard deviation of ξ and of ξη for three
parameter scenarios, two correlation values and two choices of the size of the simulation
sample.

Simulation results are satisfactory. The mean and the median of the parameters obtained in Table 3 are similar to those obtained in
[Bollerslev and Zhou, 2002], only the standard deviation is slightly higher.

Note: the methodology in [Bollerslev and Zhou, 2002] exploits the knowledge of the square root model that generates the asset price observations, our
methodology instead is model free and is able to recover the parameters of the data generating process without making a parametric assumption.
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Volatility of Volatility and Leverage Montecarlo Analysis

The performance of Fourier method is comparable to the one of the parametric
method proposed in [Bollerslev and Zhou, 2002].
This exercise is only an illustrative example to show the efficiency of the method:
as a matter of fact, parametric methods exploiting the assumption of a model, are
expected to outperform non parametric methods.
Further analysis on going, where microstructure contamination is included.
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Forecasting volatility

Forecasting volatility

Empirical analysis have shown that the forecasting performance of the
realized volatility is superior to that of classical ARCH models
[Andersen and al., 2003]

BUT microstructure noise contamination badly affects realized volatility’s
forecasting performance of future integrated volatility

[Andersen et al., 2006] extend the analysis to the case where the price is
contaminated by microstructure noise, using other realized volatility measures
that are corrected to noise
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Forecasting volatility

Methodology

The forecasting performance of the Fourier estimator of integrated volatility is
analyzed in [Barucci, Magno and M., 2010]:

Given a measure of the integrated volatility in the period [t − 1, t] we evaluate its
capability of forecasting the integrated volatility on day [t, t + 1]:
to this end the linear regression of the one day ahead integrated volatility over the
today volatility is considered: the forecasting performance can be evaluated
through the R2 (coefficient of determination) of the linear regression:
the choice of the R2 implicitly corresponds to use the mean squared forecast error
which is the most common benchmark to evaluate the forecasting performance.
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Forecasting volatility

Model under microstructure

The logarithm of the observed asset price

p̃(s) = p(s) + u(s)

p(s) the efficient log-price process, u(s) microstructure noise component.
The one period, say [t − 1, t], integrated volatility is

IV (t) :=

∫ t

t−1

σ2(s)ds

Choose h step size (h→ 0)

R̃V
h
(t) the realized volatility and F̃M

h
(t) the Fourier estimator in the presence

of microstructure noise
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Forecasting volatility

Studying R2

Under the no leverage hypothesis:

Cov(IV (t + 1), R̃V
h
(t)) = Cov(IV (t + 1),RV h(t)) = Cov(IV (t + 1), IV (t))

Thus we compare:

R2
R̃V

:=
Cov(IV (t + 1), R̃V n(t))2

Var [IV (t)]Var [R̃V n(t)]
=

Cov(IV (t + 1), IV (t))2

Var [IV (t)]Var [R̃V n(t)]
(4)

R2
F̃M

:=
Cov(IV (t + 1), F̃Mn,N(t))2

Var [IV (t)]Var [F̃Mn,N(t)]
=

Cov(IV (t + 1), IV (t))2

Var [IV (t)]Var [F̃Mn,N(t)]
(5)

Formulas (4) and (5) ⇒ maximizing the R2 of the linear regression is equivalent
to minimizing the variance of the considered estimator ⇒ minimum variance
estimators should have better forecasting performances
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Forecasting volatility

Direct comparison of the forecasting performance of the two methodologies is
possible by comparing the variance formulae varying the microstructure parameters

Var [R̃V
h
(t)] = Var [RV h(t)] + 2V 2

u (
2Ku

h
− Ku + 1 + 4

E [IV (t)]

Vu
), (6)

(Vu = variance of the noise, Ku= kurtosis). As h (step size) → 0 (6) diverges.

Var [F̃M
h,N

(t)] = Var [FMh,N(t)] +
2π

h
β(h,N) + γ(h,N), (7)

where
β(h,N) := 4KuV

2
u (1 + D2

N(h)− 2DN(h)),

γ(h,N) := 8VuE [IV (t)] + 2V 2
u − 2KuV

2
u + 4V 2

u (1 + Ku)(2DN(h)− D2
N(h)),

and DN(h) is the Dirichlet kernel. Under the condition hN2 → 0:

lim
h→0,N→∞

2π

h
β(h,N) = 0, lim

h→0,N→∞
γ(h,N) = 8VuE [IVt ] + 2KuV

2
u + 6V 2

u

⇒ (7) converges to a constant.

Finally, given a sampling frequency h, it is possible to determine the optimal (in the
sense of minimizing the variance) Fourier cutting frequency Ncut , having good effects on
the forecasting performance.

M.E.Mancino (Dept. Math. for Decisions) Fourier Volatility Estimation Method: Theory and Applications with High Frequency DataMarch 9th, 2012 36 / 49



Forecasting volatility Monte Carlo analysis

Realized volatility type measures and the Fourier estimator: forecasting the
integrated volatility one step (day) ahead
Three different data generating processes (as in [Andersen et al., 2006]):
M1) - GARCH Model

dσ2(t) = κ(θ − σ2(t))dt + σσ2(t)dW 2(t)

with κ = 0.035, θ = 0.636, σ = 0.1439, note that E [IV (t)] = θ = 0.636,
M2) - Two-Factor Affine

σ2(t) = σ2
1(t) + σ2

2(t), dσi (t) = κi (θi − σ2
i (t))dt + σiσ

2
i (t)dW 2(t) i = 1, 2

with κ1 = 0.5708, θ1 = 0.3257, σ1 = 0.2286, κ2 = 0.0757, θ2 = 0.1786, and
σ2 = 0.1096, note that E [IV (t)] = θ1 + θ2 = 0.5043,
M3) - Log-Normal Diffusion

d log σ2(t) = κ(θ − log σ2(t))dt + σdW 2(t)

with κ = 0.0136, θ = −0.8382, σ = 0.1148, note that

E [IV (t)] = eθ+σ2

4κ = 0.5510.
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Forecasting volatility Monte Carlo analysis

Data generation

A simple Euler Monte Carlo discretization procedure generates high frequency evenly sampled theoretical prices p(t) and observed returns by simulating
second-by-second return and variance paths over K = 240 trading days (one trading year). A trading day is T = 6 hours for a total of 21, 600
observations (a tick corresponds to a second).

Then we sample the observations varying the uniform sampling interval ρ(n) = T
n

obtaining data sets with different frequencies. The initial point of the

simulation of the volatility process is set at E [IV (t)].

For each observation tj the observed asset price is obtained by adding the microstructure noise component to the theoretical price: realizations

η(tj ) (j = 0, 1, . . . , n) come from a sequence of i.i.d. random variables with zero mean and constant variance.

Microstructure noise variance is set equal to a given percentage of the integrated volatility:

Var [η(t)] = λE [IV (t)] with λ = 0%, 0.1%, 0.5%.

We consider the following sampling periods:

n 2160 1440 720 360 288 96 48 24 12

ρ(n) 10” 15” 30” 1’ 1’ 15” 3’45” 7’30” 15’ 30’
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Forecasting volatility Monte Carlo analysis

Forecasting future integrated volatility

Given the volatility process of the theoretical asset price, we calculate the exact
integrated volatility:

The comparison between the realized and the Fourier volatility methodology is
accomplished through the R2 associated with the Mincer-Zarnowitz style linear
regression of the integrated volatility at date t + 1 (IV (t + 1)) onto a constant
and the integrated volatility of the previous day computed according to the
realized volatility method and the Fourier method, formulae (4) and (5)
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Forecasting volatility Monte Carlo analysis

M1 M2 M3

λ n R2(RV ) R2(FMN ) N R2(RV ) R2(FMN ) N R2(RV ) R2(FMN ) N
0% 2160 0,9035 0,9053 581 0,5707 0,5701 806 0,9010 0,9013 788

1440 0,9028 0,9036 536 0,5575 0,5612 458 0,8914 0,8918 533
720 0,8998 0,9033 326 0,5551 0,5579 335 0,8771 0,8806 345
360 0,8919 0,8926 178 0,5097 0,5112 178 0,8592 0,8592 180
288 0,8837 0,8862 124 0,5036 0,5049 144 0,8326 0,8349 143
96 0,8025 0,8044 42 0,3846 0,3908 46 0,7270 0,7273 48
48 0,7336 0,7344 24 0,3197 0,3170 24 0,6148 0,6170 24
24 0,5750 0,5792 12 0,2176 0,2134 12 0,4571 0,4652 11
12 0,4476 0,4538 5 0,1619 0,1709 5 0,3466 0,3315 6

0.1%2160 0,6931 0,8861 170 0,3995 0,5377 251 0,8380 0,8771 386
1440 0,7533 0,8763 143 0,4060 0,5232 218 0,8397 0,8639 267
720 0,8103 0,8616 182 0,5040 0,5154 176 0,8413 0,8464 182
360 0,8238 0,8435 121 0,4387 0,4601 155 0,8311 0,8336 180
288 0,8085 0,8296 82 0,4238 0,4410 99 0,8216 0,8217 139
96 0,7476 0,7506 42 0,3369 0,3536 37 0,7020 0,7007 47
48 0,6633 0,6595 23 0,2876 0,2929 23 0,6027 0,6016 23
24 0,5456 0,5459 12 0,2020 0,1975 12 0,4495 0,4603 11
12 0,4244 0,4301 5 0,1605 0,1672 5 0,3433 0,3306 5

0.5%2160 0,2224 0,8422 86 0,0878 0,4402 80 0,4317 0,8099 140
1440 0,2249 0,8211 62 0,1086 0,3972 61 0,4415 0,7888 125
720 0,3439 0,8019 50 0,1850 0,3790 51 0,6434 0,7486 98
360 0,3776 0,7419 50 0,1973 0,3500 35 0,6667 0,7222 75
288 0,4837 0,7099 31 0,2042 0,2749 32 0,6128 0,6683 60
96 0,5254 0,6100 17 0,2429 0,2669 30 0,6021 0,6185 24
48 0,4857 0,5757 18 0,2341 0,2395 24 0,5679 0,5719 23
24 0,4650 0,4675 10 0,1550 0,1536 5 0,4139 0,4202 11
12 0,3696 0,3907 4 0,1399 0,1450 5 0,3244 0,3088 6
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Forecasting volatility Monte Carlo analysis

Comments

Concerning the realized volatility estimator, the R2 goes up monotonically
as the sampling horizon decreases only in a model without noise, if noise is
added then the R2 reaches the highest value for a sampling horizon between
1-5 minutes

For the Fourier estimator the R2 increases with the sampling frequency also
in a model with microstructure noise

The forecasting performance of the two estimators is quite similar in a model
without noise. When noise is added the Fourier estimator outperforms the
realized volatility estimator in a significant extent in particular for high
frequency observations and when the noise component is relevant.

When the noise increases, even maintaining the same size of the grid, the
cutting frequency of the Fourier estimator becomes smaller and smaller:
cutting the highest frequencies in the Fourier expansion we ignore
high-frequency noise, as remarked in [M. and Sanfelici, 2008].
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Forecasting volatility Monte Carlo analysis

Forecasting: noise robust estimators

Compare the quality of the forecasts obtained through the Fourier method with
that obtained by variants of the realized volatility estimator RMn(t) that turn out
to be robust to microstructure noise, combining a fast time grid with some other
slow time grids [Andersen et al., 2006]

sparse estimator which is the equally spaced 75 second grid subsampled from
the principal one

average estimator by [Zhang et al., 2005]

Two Scaled estimator combination of the average estimator with the classic
realized volatility over the principal grid

Two Scaled Adjusted estimator [Zhang 2006]

[Zhou, 1996] estimator which extends the classical realized volatility by
considering also the first-order serial correlation of high frequency returns

Kernel estimator in [Barndorff-Nielsen and al., 2008a] (here Tukey-Hanning
kernel)
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Forecasting volatility Monte Carlo analysis

M1 M2 M3

λ Model R2 N R2 N R2 N

0.1% RV all
t 0,7533 0,3995 0,8397

RV sparse
t 0,8085 0,4238 0,8311

RV average
t 0,8796 0,5084 0,8581

RV TS
t 0,8703 0,4853 0,8417

RV
TSAdj
t 0,8703 0,4853 0,8417

RV Zhou
t 0,7830 0,4512 0,8254

RV Ker
t 0,8610 0,4977 0,8464

FMN
t 0,8763 143 0,5232 218 0,8639 182

0.5% RV all
t 0,2249 0,0878 0,4415

RV sparse
t 0,3837 0,2042 0,6128

RV average
t 0,7608 0,3928 0,8022

RV TS
t 0,7391 0,3598 0,7886

RV
TSAdj
t 0,7391 0,3598 0,7886

RV Zhou
t 0,2251 0,1005 0,5059

RV Ker
t 0,6043 0,2516 0,7498

FMN
t 0,8211 62 0,3972 61 0,7888 98

Tabella: R2 for Integrated Variance Forecasts: linear regression of the integrated
volatility at time t + 1 onto a constant and the volatility at time t computed as a
realized type volatility estimator or as the Fourier volatility.
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Forecasting volatility Monte Carlo analysis

Comment

Fourier method tends to prevail when the the noise level is high

M.E.Mancino (Dept. Math. for Decisions) Fourier Volatility Estimation Method: Theory and Applications with High Frequency DataMarch 9th, 2012 44 / 49



Conclusion

Conclusion

We have seen that the Fourier estimator of covariance is:
(i) consistent under asynchronous trading,
(ii) positive definite,
(iii) asymptotically unbiased in the presence of various types of microstructure
noise,
(iv) inconsistent in the presence of microstructure noise, nevertheless the MSE of
the Fourier estimator converges to a constant as the number of observations
increases
(v) further it allows us to treat volatility as an observable variable, thus we can
exploit the knowledge of its path
(vi) has competitive forecasting performance in particular for high frequency
observations and when the noise component is relevant
V a very interesting alternative especially when microstructure effects are
particularly relevant in the available data
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